ARTES Application Workshop

SINUE

Satellites enabling the Integration in

Non-segregated airspace of UAS in Europe

Feasibility Study on the Use of Satellites for the Integration of UAS in the European Airspace

ESTEC, April 6th 2011

- 01 Project objectives
- 02 Consortium presentation
- 03 Project study logic
- 04 Phase 1: mission and infrastructure candidates
- 05 Phase 2: selection and detailed desing
- 06 Phase 3: cost benefit analysis
- 07 Conclussions

01 Project objectives

- 02 Consortium presentation
- 03 Project study logic
- 04 Phase 1: mission and infrastructure candidates
- 05 Phase 2: selection and detailed desing
- 06 Phase 3: cost benefit analysis
- 07 Conclussions

gm∕

SINUE Project: Objectives

- Determine the feasibility and the overall planning for a UAS mission to demonstrate:
 - The integration into non-segregated airspace of UAS using satellite communications and navigation for C2, S&A and ATC relay,
 - The added value of satellite communications for high data rate payload links to such a mission.
- Provide a detailed investigation into the viability of such selected solution in view of future services development based on UAS supported by satellite systems.
- Identify the investments necessary in the future and the next steps required in technical and regulatory terms to effectively establish such a service solution and provide an associated roadmap in support of specific civil/security/military services development.

- 01 Project objectives
- 02 Consortium presentation
- 03 Project study logic
- 04 Phase 1: mission and infrastructure candidates
- 05 Phase 2: selection and detailed desing
- 06 Phase 3: cost benefit analysis
- 07 Conclussions

CONSORTIUM PRESENTATION

- Solid Consortium from different countries of the European Union.
- The Partners of the Consortium bring together the required expertise areas, in order to build the most appropriate team for all necessary competences:
 - UAVs
 - ATM
 - Satellite technologies
 - Regulatory framework

- 01 Project objectives
- 02 Consortium presentation
- 03 Project study logic
- 04 Phase 1: mission and infrastructure candidates
- 05 Phase 2: selection and detailed desing
- 06 Phase 3: cost benefit analysis
- 07 Conclussions

gnv

- 01 Project objectives
- 02 Consortium presentation
- 03 Project study logic
- 04 Phase 1: mission and infrastructure candidates
- 05 Phase 2: selection and detailed desing
- 06 Phase 3: cost benefit analysis
- 07 Conclussions

ARTES Application Workshop: SINUE TARGET APPLICATIONS

- Maritime Surveillance & Coastguard
- Border Surveillance/Control
- Civil Security and Law Enforcement
- Infrastructure monitoring/surveillance:
 Oil and Gas, Electricity Networks...
- Disaster management and Mitigation
- Fire fighting
- Earth Observation and Remote Sensing
- Monitoring: Agriculture, Forestry and Fisheries
- Communications and Broadcasting

AT-One

ındra

gm/

User needs and mission selection approach

Users needs

SPAIN

Xarxa RESCAT – Rescue Network Servei Metereologic de Catalunya Guardia Civil Ejército del Aire

PORTUGAL

۲

APRAM – Portos da Madeira FAP – Força Aérea Portuguesa

GERMANY

German Ministry of the Interior (Federal Police) Dutch Royal National Police Services Cost Action IS0802: Unmanned Aerial Systems in Atmospheric Research

SSC (Swedish Space Cooperation)

AT-One

ındra

gm⁄

ARTES Application Workshop: SINUE SELECTION CRITERIA

Mission selection criteria

- Experience with similar UAS related initiatives / missions
- End user interest and commitment
- Stakeholders' needs and requirements
- Mission and operational aspects
- Environmental aspects
- Integrated Logistics Support
- Cost
- Social impact and benefit

UAS selection criteria

- Maturity
- Safety
- Performances and Payload
- ILS "Footprint"
- Cost
- "Europeanality"
- Information availability

VAT-One SES≜ASTRA

gm/

- 01 Project objectives
- 02 Consortium presentation
- 03 Project study logic
- 04 Phase 1: mission and infrastructure candidates
- 05 Phase 2: selection and detailed design
- 06 Phase 3: cost benefit analysis
- 07 Conclussions

<u>g</u>m⁄

Selected mission: Canary Islands

Users: Guardia Civil and Spanish Air Force

 Mission: border control

gmv'

Patera

Cayuco

ARTES Application Workshop: SINUE

Selected UAV infrastructure

HERON 1

		Span	16.60 m	
	Wing	Area	13.00 m ²	
Dimensions		Aspect Ratio	21.2	
	Fuselage Ler	5.20 m		
	Overall Leng	8.50 m		
	Overall Heigh	2.30 m		
	Payload bay	0.80 m ³		
	Wheel Track		3.10 m	

	Max. Take off Weight (MTOW)	1100 Kg
	Operative Empty Weight (OEW)	600 Kg
Weight:	Max. Fuel Weight	430 Kg
	Max. Payload Weight	250 Kg
	Max. Useful Load Weight	500 Kg

SINUE

AT-One

gm⁄

Selected Satellite infrastructure

The requirements for both the payload control forward link and the mission data return transmission follow:

Forward:

64 kbps achieved using 5 orthogonal carriers of 12.75 kbps each.

Spread Spectrum (Spreading Factor: 31)

QPSK Modulation

Code Rate: 1/2 + Reed Solomon (123/107)

QoS target performance: 10-8 (BER)

Return:

4 Mbps

QPSK Modulation

Code Rate: 1/2 + Reed Solomon (208/192) QoS target performance: 10-8 (BER)

NECC

gm∕

ındra

ARTES Application Workshop: SINUE

Mission schedule

Tasks	٧	Veek	: 1		W	/eek	2		W	feek	3		W	/eek	4		W	/eek	5		W	íeek	6	,
UAS arrival																								
Tests on ground																								
Flights				1			2	3			4	5			6	7			8					
Data Analysis																								
General Debriefing																								
Tests Report																								
Project Debriefing																								

The activities are formed by:

- 1 day for coordination of UAS arrival to demonstration area
- 4 days of tests on ground (i.e. Communications, GDT, GCS, aircraft)
- 4 weeks of flights, 2 per week (Monday and Thursday)
- 4 weeks of data analysis from all collected data during demonstration
- 1 day, after all flights have be performed, for a general debriefing
- 6 days for making a whole tests report
- 1 day for a final project debriefing

Indra

gmv

ARTES Application Workshop: SINUE Simulation results

gm⁄

- 01 Project objectives
- 02 Consortium presentation
- 03 Project study logic
- 04 Phase 1: mission and infrastructure candidates
- 05 Phase 2: selection and detailed desing
- 06 Phase 3: cost benefit analysis
- 07 Conclussions

ARTES Application Workshop: SINUE

Our Methodology Cost Benefit

Indra

AT-One

SESASTRA

<u>gm</u>

Results: Economical analysis

Personnel

QUANTITATIVE BENEFITS

Reduction of Operatinal Cost

ındra

SESASTRA

-	\sim		•
ų		N	
	PRODUCT	ING SOLUTION	

Low

3591

1663.2

7560

Fuel Consumption Maintenance Cost	5201 23100	520147282310021000					
	FOKKE	R F-27 VS HERÓN 1					
Reduction of Operatinal Cost	Hight	Medium	Low				
Personnel	415,25	377,5	339,75				

2032.8

9240

Hight

4389

P3-ORION VS HERÓN 1

Medium

3990

1848

8400

QUALITATIVE BENEFITS

•No crew onboard

•capabilities due to the use of SATCOM systems.

Fuel Consumption

Maintenance Cost

•Increment of endurance.

- Modern technology payload
- •End-user will gain leading experience

•Go further when planning future missions in **dull, dirty and dangerous** environments.

- 01 Project objectives
- 02 Consortium presentation
- 03 Project study logic
- 04 Phase 1: mission and infrastructure candidates
- 05 Phase 2: selection and detailed desing
- 06 Phase 3: cost benefit analysis
- 07 Conclussions

ındra

AT-One

gm⁄

ARTES Application Workshop: SINUE

Conclusions Roadmap

ındra

AT-One

SESASTRA

Ć

INECO

gm∕

Conclusions

It has been defined the way for a feasible mission:

- List of actions to deploy a demo during the next year
- List of contacts to be involved to prepare the mission
- Selection of a mature UAV
- Covering real technical and operational requirements collected from the end-users interviewed
- The UAV is managed inside ATC and non-segregated airspace
- All mission has been simulated over different failures scenarios to prove the safety procedures
- Cost/benefit assessment has been performed

This mission will be used to demonstrate its technical and cost wise feasibility for other users and applications

gm/

ındra

gnv

Thanks for your attention

Jorge Calvín Gil-Mascarell

Account Manager Telecommunications and Navigation <u>ircalvin@indra.es</u> www.indra.es/space